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Foucault was the first to establish the properties of a gyroscope located 

on the surface of the Earth and constrained to move in such a way that 

the axis of natural rotation is always vertical or horizontal (see, for 

example, [ 1 I). 

The equations of motion and the stability of steady-state solutions 
given by Foucault are considered below, under similar assumptions and 
taking into account the mass of the suspension rings. The Chetaev method 
is used to construct the Liapunov functions which represent the solution 
of the problem. The effect of dissipative forces with complete dissipa- 
tion on the stability of motion is also discussed. 

1. Consider a gyroscope in a Cardan suspension. Let us assume that the 
axis of the outer Cardan ring is vertical and that the axis of the inner 
ring is horizontal. We shall assume that the outer ring is fixed and can- 
not rotate with respect to the surface of the Earth. 

Let us introduce a set of coordinates OxlyIzl which is rigidly attach- 
ed to the Earth and whose origin is at the point of intersection of the 
axes of the Cardan suspension. ‘Ihe zl-axis is along the vertical, is 
positive in the upward direction and coincides with the axis of the outer 

(fixed) ring, while the x1- and yl-axes lie in the horizontal plane in 

the east and north directions, respectively. 

Let us also consider a set of coordinates Oxyz whose axes are attached 

to the housing. The x-axis is in the direction of the axis of rotation 
of the housing. Since the outer ring is assumed to be fixed, it follows 

that this axis takes up a fixed direction in the horizontal plane which 

can be defined by an angle a. 'Ihis angle is measured from the xl-axis in 

the anticlockwise direction if one looks from the positive end of the 
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zl-axis. lhe z-axis is directed along the axis of symmetry of the gyro- 

scope and the y-axis completes a right-handed triad. ‘lhe natural rota- 
tion axis is thus constrained to remain in the vertical plane and forms 
an angle a with the meridional plane. 

The position of the gyroscope relative to the Earth is defined by two 
angles, namely, 8 the angle between the axis of natural rotation with 
the vertical and 4 the angle through which the gyroscope rotates in the 
Oxyz system. 

‘lhe projections of the instantaneous angular velocities 0’ and w of 
the housing and the gyroscope in the O.xlylzl system along the coordinate 
axes of the Oxyz system are given by 

p”= 6, q”= 0, P = 0 

p=a, q = 0, i-=cp 

In order to take into account the effect of the rotation of the Earth 
on the motion of a gyroscope, let us choose as the principal (inertial) 
system of coordinates a system which has its origin at the center of the 
Earth and whose axes execute translational motion with respect to the 
directions passing through the center of mass of the solar system towards 
the fixed stars. 

Finally, let us consider an auxiliary system of coordinates 05~5 
which is in translational motion relative to the [,-, qa- and [,-axes of 
the principal system. Below, we regard this system as fixed if the 
inertial forces due to the translational motion are added to the forces 

acting on the mechanical system. These inertial forces may be combined 
with the force due to the Earth’s gravitation. ‘lhe resultant of the 
gravitational and the centrifugal forces due to the translational motion 
is‘, in fact, the weight. ‘bus, if the O[T< system is looked upon as 
fixed, the acting force is not the force of attraction but the weight. 

Let us denote the instantaneous angular velocity of the Ox,ylz, system 
relative to the O~T]C system by u. Clearly,u represents Ehe angular 
velocity of the Earth relative to the t,, qa, ca system. Its projections 
onto the x-, y- and z-axes are given, respectively, by 

u,= ucoshsina, uy = u(coshcosacos8 + sinhsinfl) 

uL = u(-coshcosasin0+sinhcos8) (u = 0.000073 set-‘) 

where u is the modulus of u and A is the latitude. 

The velocity of any point in the housing and the gyroscope relative 
to the 06~ [ system is then given, respectively, by 
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v” = (u + d) x r, V=(u+o)xr 

where r is the radius-vector of the point under consideration. 

Let us assume that the x-, y- and z-axes are the principal axes of 
the ellipsoids of inertia for the housing and the gyroscope, and let us 
denote the moments of inertia of the housing by A’, B”, Co and the 
moments of inertia of the gyroscope relative to these axes by A, B=A, C. 

‘Ihe kinetic energies To and T of the housing and the gyroscope are 
given, respectively, by 

2T”= A0 (Q + u cos 3L sin a)” + B” u2 (cos h cos. cI cos O + sin h sin 0)2 + 

+ C” u2 (- cos h cos a sin 6 + sin h cos 0)2 

2T = A(6 +ucoshsina)2+A~2(cOshcosacos8+sinhsinO)a+ 

+C[u(-coshcosasinefsinh c0se)+cp]s 

If it is assumed that the bearings are frictionless and that the only 
forces active are the gravitational forces, then the force function will 
be of the form U = - mgl cos 8, where m is the mass of the gyroscope - 
housing system and 1 is the z-coordinate of the center of gravity of 
this system. 

Since the coordinates 8 and q5 specify the configuration and are holo- 
nomic, it follows that the equations of motion can be written in the form 
of the Lagrange equations of the second kind and that the function L is 
of the form 

2L=(A+A”)~~+C(p2+2(A+Ao)u~cos3Lsinu+ 

+2Cu~(-cos?~cosasin8+sinhc0s8)+ 

+ (A + B”) u2 (COS h cos u cos 8 + sin h sin 0)2 + (C + Co) ~2 x 

x (- cos h cos u sin e +sin h cos e)s -2 ~g I cos 8 

We note that the kinetic energy of the outer ring of the Cardan sus- 
pension is constant and is therefore not included in the function L. 

The equations of motion have the following integrals: 

(A + A”) d2+ C$ - (A + B”) u2 (cos h cos u cos 0 + sin li, sin 8)2 - 

- (C + CO) z&s (- coshcosusinB+sinhc0sO)2 + 2mgZc0sfl= 2h 

i+u(-coshcosusin~+sinhcos8)=r=const 
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The first of these is the generalized kinetic-energy integral, and the 
second corresponds to the cyclic coordinate 4. 

Eliminating + with the aid of the second integral we obtain a first- 
order differential equation with separable variables for 8. It can be 
integrated by changing the variable, and the final result reduces to an 
elliptical quadrature. 

2. Let us now assume that the point 0 lies in the Northern Hemisphere 
but not at the Pole or the Equator, i.e. we shall assume that 0 < X < n/2. 
When I = 0, the equations of motion have the following special solution: 

8 = -tan-’ Cy$ B =o, r = ro (2.1) 

In this case the spin-axis forms a constant angle with the vertical, 
and the gyroscope rotates about this axis with a constant angular velo- 
city. Let us set 

for the unperturbed motion. 

The equations of perturbed motion admit of the following solutions: 

v, = (A+4rlr2+ w+2wO-~el2+ 

+uy[Cro+u(C"-A--_B")~]~,2+...=cOIlSt 

v2 = q2 = const (y = vsin2 h + cos2 h ~09 cc > 0) 

The first of these includes terms up to second order of small quantities. 

Consider the integral 

V=V,-X(r,-- W) VS =(A f A”) r11’ + CY,~ + UT [Cro + 

-1 u (C” - A - B”) y] El2 + . . . = con& 

Ihe function V<[,, ql, s2) is a positive-definite function when 

cr, + u (CO - A - B”) I/sin2 h + co9 h eos2 cc > 0 (2.2) 

According to the Liapunov theorem this is a sufficient condition for-the 
stability of motion described by Equation (2.1) *with respect to 8, 8, r 
and consequently also with respect to 8, e’ and +. 

Let us consider the following special cases. 

1. a = 0. Here the axis of the gyroscope is constrained to lie in the 
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plane of the meridian and 6 = n/2 + h, i.e. the spin-axis is parallel to 
the world axis. The stability condition given by Equation (2.2) is then 
of the form Cr, + u(C” - A - B”) > 0. 

2. a = n/2. Here the middle plane of the outer ring coincides with the 
plane of the meridian and 0 = 0, i.e. the axis of the gyroscope is 
vertical and the stability condition is Cr, + u(C” - A - B”) sin X > 0. 

Let us now show that the condition given by Equation (2.2) is also 
necessary. Consider the function 

v = (A + A”) E1 ii 

Its time derivative is of the form 

and when the condition 

Cr,+u(C”-A-.B’)y< 0 

is satisfied, it is a positive-definite function of the coordinates cl, 
5,. The function V can then assume positive values. According to the 
Chetaev theorem, the motion described by Equation (2.1) is then unstable. 
It follows that (2.2) is the necessary and sufficient condition for the 
stability of motion described by Equation (2.1) if the boundary is ex- 
cluded. 

3. Let us assume that in addition to the gravitational forces the 
mechanical system under consideration is also subject to dissipative 
forces with complete dissipative forces with complete dissipation. ‘lhe 
equations of motion in this case will include moments of frictional 
forces on their right-hand s,ides. The latter are partial derivatives of 
the Rayleigh function F(8, $1 : 

‘Ibis function is a negative-definite quadratic function of the general- 
ized velocities with constant coefficients. 

The equations of motion will admit of the special solution (2.1) only 
when additional forces are applied to the system and are such that their 
constant moments balance the moments of the frictional forces. 

Let us investigate the stability of motion described by Equation (2.1) 
under these assumptions. In order to achieve this, let us consider the 
quadratic form W given by 
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w = (A + A”) Tj12 -/- cq22 j uy [Cr, + u (CO - A - I?“) r] El’ 

It represents all second-order terms in the expansion of the integral 

V, considered above. It was shown in [ 2 I that if the function W is of 
definite sign, then the motion described by Equation (2.1) is stable in 
the presence of conservative forces only, and becomes asymptotically 
stable on addition of forces with total dissipation and forces which 
balance the dissipative forces. The corresponding condition which has to 
be satisfied by W is then identical with that given by EQuation (2.2). 
It follows that the motion given by Equation (2.1) is asymptotically 
stable when condition (2.2) is satisfied, and dissipative forces with 
total dissipation, and also forces which balance them, are present. 

4. Let us now assume that the outer ring of the Cardan suspension can 
rotate about its vertical axis, and the inner ring is attached to it so 
that its median plane is horizontal. This is equivalent to the assump- 
tion that the angle 8 is always equal to n/2. In this case the spin-axis 
is constrained to lie in the horizontal plane. The axes of rotation of 
the housing (r) and of spin (z) are then in the horizontal plane, and 
the y-axis coincides with the vertical zl-axis. 

The position of the gyroscope relative to the Earth is defined by two 
angles, namely, y5 (the angle of rotation of the outer ring measured from 
the xl-axis in the horizontal plane) and the spin-angle q5. 

‘lhe projections of the instantaneous angular velocities o” and o of 
the outer ring-housing system and the gyroscope in the Oxlylzl system 
onto the n-, y- and z-axes are 

p” = 0, qo = +, ro = 0; P = 0, q= $3 )_=cp 

while the projections of u on these axes are 

u, = ucoshsing, uy = u sin h, uz = -ucoshcos~ 

Let us now denote the principal moments of inertia of the outer ring- 
housing system relative to the x-, y- and z-axes of I,, I, and I, and 
the moments of inertia of the gyroscope relative to these axes by A,B = 
A,C. Tne kinetic energy To of the outer ring-housing system and the 
kinetic energy T of the gyroscope are then given by 

2T” = I, u2 cos2 h sin2 7~) + 1, ($ + u sin h)2 + I3 u2 cos2 h cos2 I# 

2T = Au2 cos2 h&n2 -$ + A ($ + u sin h)” + C (cp’- u cash cosg)” 

If the forces acting are only the gravitational forces then U= 0 
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(the height of the center of gravity is constant) and the Lagrange func- 

tion is of the form 

2L=(A+1,)$2+C;P2+2(A+ I,)z~lj)sinh -2C~u~coshcos*+ 

+ (A + I1 - C - ~,)r6?cos2 hsin211, 

'lhe equations of motion admit of the following generalized energy 

integral and an integral corresponding to the cyclic coordinate $: 

(A~12)~2+C;p2-(A+~1-C-~13)~2cos2hsinag=2h 

cp-Ucoshcosl# = r = const (4.U 

5. Let us investigate the stability of the particular solution 

$ =G l&o, r = r. (5.1) 

of the equation of motion. The spin-axis assumes the north-south position 

in the horizontal plane. 

Let us substitute 

for the perturbed motion. The following integrals of the equations of 

perturbed motion will then correspond to those given by Equation (4.1): 

~,=(A+~2)912+C~12~+2C(~o--cos~)r2$ 

+ucosh[Cr,+u(I,-L4--_I,)cosh]~12+...=const 

V, = q2 = const 

'Ihe first of these includes terms up to the second order inclusively. 

The integral 

V=V,--2C(r,- ucosh)V, =(A + I,)Tba + cTjaa+ ucosh[Cr,+ 

+ u(I,- A -II,)cosh]~,2 + . . . = const 

will be sign-definite if the condition 

cro + ZJ (I2 - A - I,) cos h > 0 (5.2) 

is satisfied. 

In accordance with the Liapunov stability theorem, the latter inequal- 

ity is a sufficient condition for the stability qf motion described by 

Equation (5.1) with respect to the vari.abl_es 16, $, r and, consequently 

also with respect to the variables $, $, Q,. 
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A consideration of the function V = (A + I*) tlil and its time- 
derivative, in conjunction with the’equations of perturbed motion and 
the Chetaev instability theorem, leads to the conclusion that the condi- 
tion given by Equation (5.2) is, in fact, the necessary and sufficient 
condition for the stability of the motion described by Equation (5.1), 
if the boundary is excluded. 

Finally, let us assume that the system is subject to dissipative 
forces with total dissipation and additional forces whose constant 
moments balance the moments of dissipative moments in the case of Aqua- 
tion (5.1). A consideration of the function 

Iv = (A + I,) Tp + Cqa2 + u cos h [CT, + u (I, - A - II) cos h] g.1’ 

shows that, as before, the motion (5.1) is asymptotically stable if the 
condition (5.2) is satisfied also in the presence of the indicated addi- 
tional forces. 
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